“ANTI-SHOCK” AIR RELEASE AND VACUUM BREAK VALVES
FOR EFFECTIVE AIR RELEASE VACUUM PROTECTION AND SURGE ALLEVIATION
Vent-O-Mat Series RBX has evolved from a long lineage of research and development into a product that has proven unsurpassed for air release, vacuum protection, surge alleviation and pipeline flow enhancement.

The basis of the Vent-O-Mat design is in the understanding of the physical laws that govern air valve and pipeline operation. Reaction to pipeline dynamics is therefore instantaneous and protection provided is relevant to the pipeline’s needs.

Vent-O-Mat Series RBX truly represents the pinnacle of valve design evolution. This valve design provides the most comprehensive, effective and efficient pipeline protection relative to initial cost of any other available pipeline component. This can easily be gauged from the below:

Automatic Surge Protection

The unique Series RBX valve incorporates as standard, three design features to automatically protect a pipeline, under all pipeline operating conditions, from the destructive surge and water hammer phenomena. These features are independent of any mechanical devices ensuring reaction in a very low milli second time span.

Effective Air Release

The RBX design ensures effective de-aeration under all pipeline flow and operating conditions, via either one of three discharge orifices.

Vacuum Protection

The RBX series large orifice diameters equal the nominal size of the valve. This ensures the least possible resistance to the intake of air and consequently the least possible negative pressure within a draining pipeline. The use of solid, cylindrical floats ensures instantaneous reaction, discourages the "Venturi" phenomenon and is a further guarantee of effective vacuum protection.

Guaranteed Performance

The RBX has been designed and developed to provide the optimum usable and safe performance relative to all functions. Selection data has been substantiated through third party testing and can therefore be confidently referenced.

The surge protection function of the RBX design has been incorporated in the well-known SURGE 2000 surge analysis software programme and can be analysed with great accuracy in other commercially available surge analysis programmes such as FLOWMASTER and TRANSAM.

Unparalleled Service

Vent-O-Mat is committed to customer service and to the selling of solutions. Our highly dedicated team is available at all times to assist with air valve sizing and positioning. Assistance is also provided in finding the most cost effective and/or efficient surge protection strategy relevant to the pipeline’s needs.

International Representation

Vent-O-Mat is represented in the following countries and regions:

- USA
- Canada
- Caribbean
- United Arab Emirates
- South America
- Thailand
- Germany
- Kenya
- Egypt
- UK
- South Africa
- Zimbabwe
- Tanzania
- Malawi
- Zambia
- Namibia
- Hong Kong
- Taiwan
- New Zealand
- Vietnam
- Kuwait
- Brazil
- France
- Singapore
- Australia
CATALOGUE INDEX

OPERATION - SERIES RBX 1-2
RECOMMENDED INSTALLATION ARRANGEMENTS - SERIES RBX 3
COMPONENT DESCRIPTION & MATERIAL SPECIFICATIONS - SERIES RBX 4
DN25(1") & DN50(2") - Screwed
COMPONENT DESCRIPTION & MATERIAL SPECIFICATIONS - SERIES RBX 5
DN80(3") & DN100(4") - Studded
COMPONENT DESCRIPTION & MATERIAL SPECIFICATIONS - SERIES RBX 6
DN150(6") & DN200(8") - Flanged
COMPONENT DESCRIPTION & MATERIAL SPECIFICATIONS - SERIES RBX 7
DN25(1") & DN50(2") - Screwed
GENERAL SPECIFICATIONS - SERIES RBX 8
DN80(3") & DN100(4") - Studded
GENERAL SPECIFICATIONS - SERIES RBX 9
DN150(6") & DN200(8") - Flanged
SELECTION & POSITIONING - SERIES RBX 10-12
SURGE & WATERHAMMER PROTECTION SERIES RBX 13-14
SMALL ORIFICE DISCHARGE PERFORMANCE 15
PURCHASE SPECIFICATIONS - SERIES RBX 16
ORDERING GUIDE & TEST SPECIFICATIONS - SERIES RBX 17
OPERATION - SERIES RBXb 18-19
RECOMMENDED INSTALLATION ARRANGEMENTS - SERIES RBXb 20
COMPONENT DESCRIPTION & MATERIAL SPECIFICATIONS - SERIES RBXb 21
DN25(1") & DN50(2") - Screwed
COMPONENT DESCRIPTION & MATERIAL SPECIFICATIONS - SERIES RBXb 22
DN80(3") & DN100(4") - Studded
COMPONENT DESCRIPTION & MATERIAL SPECIFICATIONS - SERIES RBXb 23
DN150(6") & DN200(8") - Flanged
COMPONENT DESCRIPTION & MATERIAL SPECIFICATIONS - SERIES RBXb 24
DN25(1") & DN50(2") - Screwed
GENERAL SPECIFICATIONS - SERIES RBXb 25
DN80(3") & DN100(4") - Studded
GENERAL SPECIFICATIONS - SERIES RBXb 26
DN150(6") & DN200(8") - Flanged
PURCHASE SPECIFICATIONS - SERIES RBXb 27
OPERATION - SERIES RBXv 28-29
PURCHASE SPECIFICATIONS - SERIES RBXv 30
ORDERING GUIDE - SERIES RBXb & RBXv 31
PRE NOTES:

1. VENTING OF A FILLING PIPELINE:
 The operation of a conventional air release valve is such that fast approaching water is almost instantaneously halted by the valve's closure without the shock cushioning benefit of any retained air in the pipeline. Consequently a transient pressure rise or shock of potentially damaging proportions can be generated in a pipeline system, even at normal filling rates.

 In addition to venting through the Large Orifice (1) when water approach velocities are sub critical, the Vent-O-Mat series RBX air release valves feature an automatic "Anti-Shock" Orifice (8) device that serves to decelerate water approaching at excessive speed, thereby limiting pressure rise to a maximum of 1.5 x rated working pressure of the valve.

2. SURGE ALLEVIATION - PIPELINE PRESSURIZED:
 In instances where a pipeline experiences water column separation due to pump stoppage, high shock pressures can be generated when the separated water column rejoins.

 The Vent-O-Mat series RBX takes in air through the unobstructed large orifice when water column separation occurs, but controls the discharge of air through the "Anti-Shock" Orifice as the separated column commences to rejoin. The rejoining impact velocity is thereby sufficiently reduced to prevent an unacceptably high surge pressure in the system. In the same way the series RBX valve prevents high surge pressures resulting from liquid oscillation in a pipeline.

3. PRESSURIZED AIR RELEASE FROM A FULL PIPELINE:
 Effective discharge by the valve of pressurized air depends on the existence of a 'CRITICAL RELATIONSHIP' between the area of the Small Orifice (7) and the mass of Control Float (4), i.e., the mass of the float must be greater than the force created by the working pressure acting on the orifice area. If the float is relatively too light or the orifice area relatively too great, the float will be held against the orifice, even when not buoyed, and air discharge will not be effected.

 To ensure that the correct 'CRITICAL RELATIONSHIP' exists the requisite 'DROP TEST' described under TEST SPECIFICATION on page 17 must be applied to any air release valve which is intended for discharge of pressurized air.

VENTING OF A FILLING PIPELINE (SUB CRITICAL WATER APPROACH VELOCITY)

Air enters Orifice (3), travels through the annular space between the cylindrical floats (4), (5), and (6) and the valve Chamber Barrel (2) and discharges from the Large Orifice (1) into atmosphere.
VENTING OF A FILLING PIPELINE (EXCESSIVE WATER APPROACH VELOCITY)

In reaction to increased air flow, Float (6) closes Large Orifice (1) and air is forced through the “Anti-Shock” Orifice (8) resulting in deceleration of the approaching water due to the resistance of rising air pressure in the valve.

Attention is drawn to Pre Note 1 and 2 on page 1.

PRESSURIZED AIR RELEASE FROM A FULL PIPELINE

Subsequent to the filling of a pipeline, liquid enters the valve Barrel Chamber (2) and the Floats (4), (5) and (6) are buoyed so that the Large Orifice (1) is closed by Float (6), the valve will then become internally pressurized. A minimal working pressure of < 0.5 bar acting on the relatively large area of the Orifice (1) will lock Float (6) into the closed position across the Large Orifice (1).

Disentrained air rises through the liquid and accumulates in the valve chamber, when the volume of air is sufficient to displace the liquid, Float (4) will no longer be buoyant and will gravitate downwards thereby opening the Small Orifice (7) and allowing accumulated air to be discharged into atmosphere, as air is discharged the liquid raises Float (4) and re-seals the Small Orifice (7) and prevents escape of liquid.

Specific attention is drawn to pre note 3 on page 1.

VACUUM RELIEF (AIR INTAKE) OF A DRAINING PIPELINE

Simultaneous drainage of liquid from Valve Chamber (2) causes Floats (4), (5) and (6) to gravitate downwards onto the Baffle Plate (9), thereby allowing atmospheric air through the valve to rapidly displace draining liquid in the pipeline and prevent potentially damaging internal negative pressure.
Series RBX

RECOMMENDED INSTALLATION ARRANGEMENTS

THE DEGREE OF TOLERANCE ALLOWED FOR THE EFFECTIVE OPERATION OF A VENT-O-MAT AIR RELEASE AND VACUUM BREAK VALVE IS 3 DEGREES FROM VERTICAL

MANHOLE

AIR VENT (AIR OUT) DIAMETER EQUAL OR GREATER THAN NB OF AIR VALVE

LOWER SUMP TO ALLOW DRAINAGE BY SUMP PUMP

information subject to change without prior notice

page: 3
Revision Date: Sept '15
Series RBX

COMPONENT DESCRIPTION & MATERIAL SPECIFICATION
SCREWED - DN25(1") & DN50(2")

Type:
Series RBX - Double Orifice (Small & Large Orifice) with Anti Shock Orifice Mechanism.

Nominal Sizes:
- DN25 (1")
- DN50 (2")

End Connection:
Screwed BSP(ISO R7) / NPT Male (ASME B1.20.1)

Model No's:
- RBX 2511 & 2521 ________ PN25
- RBX 4011 & 4021 ________ PN40
- RBX 1611 & 1621 ________ PN 16

Pressure Ratings:
- PN25
- PN40
- PN 16

Valves are available in AISI 304L and 316L on request.

Information subject to change without prior notice.
COMPONENT DESCRIPTION & MATERIAL SPECIFICATION
FLANGED - DN80(3") & DN100(4")

Type:
Series RBX - Double Orifice (Small & Large Orifice) with Anti Shock Orifice Mechanism.

End Connection:
Flange with screwed studs.

Nominal Sizes:
DN080 (3")
DN100 (4")

Model No's:
Pressures:
RBX 1601 _______________ PN16
RBX 2501 _______________ PN25
RBX 4001 _______________ PN40

Top Flange
Fusion Bonded
Epoxy Powder Coated
Ductile Cast Iron
BS2789 Grade 420/12
Alternatively Mild Steel
BS4360 Grade 43A (PN40)

Top Cover
ABS Polyleac PA737

Assembly Screws
Cheesehead Stainless Steel AISI 316

Barrel Seal
TEADIT NA 1002

Top Float
High Density Polyethylene

Barrel
Stainless Steel AISI 316L

Nozzle
Stainless Steel AISI 316

O-Ring Seal
EPDM Rubber

Nozzle Seat Retaining Plate
Stainless Steel AISI 316

Anti Shock Orifice
High Density Polyethylene

Nozzle Seat
EPDM Rubber

O-Ring Seal
EPDM Rubber

Tie Rods
Stainless Steel AISI 304

Connecting Screws
Cheesehead Stainless Steel AISI 316

Baffle Plate
Stainless Steel AISI 316

Optional Test Cock
1/4" Female BSP

Baffle Plate Spacer
ABS Polyleac PA737

O-Ring Seal
EPDM Rubber

Support Screw
Cheesehead Stainless Steel AISI 316

Studs
Stainless Steel AISI 304L

Top Flange
Fusion Bonded
Epoxy Powder Coated
Ductile Cast Iron
BS2789 Grade 420/12
Alternatively Mild Steel
BS4360 Grade 43A (PN40)

Valves available in AISI 304L & 316L on request

Information subject to change without prior notice

page: 5
Revision Date: Sept '15
COMPONENT DESCRIPTION & MATERIAL SPECIFICATION
FLANGED - DN150(6") & DN200(8")

Type: Series RBX - Double Orifice (Small & Large Orifice) with Anti Shock Orifice Mechanism.

End Connection: Flanged

Nominal Sizes: Ratings:
DN150 (6")
DN200 (8")

Model No's: Pressure
RBX 1601 ____________ PN16
RBX 2501 ____________ PN25
RBX 4001 ____________ PN40

Valves available in AISI 304L and 316L on request

Information subject to change without prior notice.
Series RBX

GENERAL SPECIFICATIONS

SCREWED - DN25(1") & DN50(2")

Type:
Double Orifice (Small & Large Orifice) with Anti-Shock Orifice Mechanism.

End Connection:
Screwed BSP/ NPT Male

Nominal Sizes:
DN25 (1") & DN50 (2")

Model No's:
- RBX 2511 _____________ PN 25
- RBX 4011 _____________ PN 40

Pressure Ratings bar:
- PN 25 ______________________ 0.5 _________ 25
- PN 40 ______________________ 0.5 _________ 40

Operating Pressure Range - bar:
- Min. Max.
 - PN 25 ______________________ 0.5 _________ 25
 - PN 40 ______________________ 0.5 _________ 40

Operating Temperature Range:
- 4°C (40°F) to 80°C (176°F)

Acceptable Media:
Potable or strained raw water.

Function:
- i) High volume air discharge - pipeline filling.
- ii) High volume air intake - pipeline draining
- iii) Pressurized air discharge - pipeline filled.
- iv) Surge dampening - high velocity air discharge, water column separation & liquid oscillation.

Materials of Construction:
- see page 4

Installation:
- see page 3

Standard Factory Tests:
- i) Hydrostatic - 1.5 x max. rated working pressure
- ii) Low head leak - 0.5 bar
- iii) Small orifice function at max. rated working pressure (minimum 1 valve in 10).

OVERALL DIMENSIONS & WEIGHTS

<table>
<thead>
<tr>
<th>DN mm</th>
<th>MODEL No.</th>
<th>PRESSURE RATING</th>
<th>A mm</th>
<th>B mm</th>
<th>C mm</th>
<th>WEIGHT kg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 1</td>
<td>025 RBX 2511</td>
<td>PN25</td>
<td>120</td>
<td>265</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>25 1</td>
<td>025 RBX 4011</td>
<td>PN40</td>
<td>120</td>
<td>317</td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>50 2</td>
<td>050 RBX 2511</td>
<td>PN25</td>
<td>165</td>
<td>325</td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td>50 2</td>
<td>050 RBX 4011</td>
<td>PN40</td>
<td>165</td>
<td>340</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

1 = Screwed BSP
2 = Screwed NPT

FLANGED AVAILABLE ON REQUEST

information subject to change without prior notice
Series RBX

GENERAL SPECIFICATIONS
FLANGED-DN80(3") & DN100(4")

Type:
Double Orifice (Small & Large Orifice) with Anti-Shock Orifice Mechanism.

End Connection:
Flange with Screwed Studs for Alignment to;
BS EN 1092 PN10, PN16, PN25 & PN40
ANSI B16.5 Class 150 & 300

Nominal Sizes:
DN80 (3") & DN100 (4")

Model No's: Pressure Ratings bar:
RBX 1601 PN 16
RBX 2501 PN 25
RBX 4001 PN 40

Operating Pressure Range - bar:

<table>
<thead>
<tr>
<th>Pressure Rating</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN 16</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>PN 25</td>
<td>0.5</td>
<td>25</td>
</tr>
<tr>
<td>PN 40</td>
<td>0.5</td>
<td>40</td>
</tr>
</tbody>
</table>

Operating Temperature Range:
4°C (40°F) to 80°C (176°F)

Acceptable Media:
Potable or strained raw water.

Function:

i) High volume air discharge - pipeline filling.
ii) High volume air intake - pipeline draining
iii) Pressurized air discharge - pipeline filled.
iv) Surge dampening - high velocity air discharge, water column separation & liquid oscillation.

Materials of Construction: - see page 5

Installation: - see page 3

Standard Factory Tests:

i) Hydrostatic - 1.5 x max. rated working pressure
ii) Low head leak - 0.5 bar
iii) Small orifice function at max. rated working pressure (minimum 1 valve in 10).

OVERALL DIMENSIONS & WEIGHTS

<table>
<thead>
<tr>
<th>DN</th>
<th>MODEL No.</th>
<th>PRESSURE RATING</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>in</td>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>080 RBX 1601</td>
<td>225</td>
<td>354</td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>080 RBX 2501</td>
<td>225</td>
<td>354</td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>080 RBX 4001</td>
<td>225</td>
<td>369</td>
<td>50</td>
<td>24</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>100 RBX 1601</td>
<td>225</td>
<td>369</td>
<td>50</td>
<td>24</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>100 RBX 2501</td>
<td>225</td>
<td>374</td>
<td>60</td>
<td>22.5</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>100 RBX 4001</td>
<td>225</td>
<td>407</td>
<td>60</td>
<td>24</td>
</tr>
</tbody>
</table>

0 = BS EN 1092

information subject to change without prior notice
Series RBX

GENERAL SPECIFICATIONS
FLANGED-DN150(6”) & DN200(8”)

Type:
Double Orifice (Small & Large Orifice) with Anti-Shock Orifice Mechanism.

End Connection:
Flange for Alignment to:
BS EN 1092 PN10, PN16, PN25 & PN40
ANSI B16.5 Class 150 & 300

Nominal Sizes:
DN150 (6”) & DN200 (8”)

Model No’s: Pressure Ratings bar:
RBX 1601 PN 16
RBX 2501 PN 25
RBX 4001 PN 40

Operating Pressure Range - bar:
Min. Max.
PN 16 0.5 16
PN 25 0.5 25
PN 40 0.5 40

Operating Temperature Range:
4°C (40°F) to 80°C (176°F)

Acceptable Media:
Potable or strained raw water.

Function:
i) High volume air discharge - pipeline filling.
ii) High volume air intake - pipeline draining
iii) Pressurized air discharge - pipeline filled.
iv) Surge dampening - high velocity air discharge, water column separation & liquid oscillation.

Materials of Construction:
- see page 6

Installation:
- see page 3

Standard Factory Tests:
i) Hydrostatic - 1.5 x max. rated working pressure
ii) Low head leak - 0.5 bar
iii) Small orifice function at max. rated working pressure (minimum 1 valve in 10).

OVERALL DIMENSIONS & WEIGHTS

<table>
<thead>
<tr>
<th>DN mm</th>
<th>MODEL No.</th>
<th>PRESSURE RATING</th>
<th>A mm</th>
<th>B mm</th>
<th>C mm</th>
<th>D mm</th>
<th>E mm</th>
<th>F mm</th>
<th>WEIGHT kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>150 RBX1601</td>
<td>PN16</td>
<td>355</td>
<td>457</td>
<td>133</td>
<td>19</td>
<td>285</td>
<td>612</td>
<td>69</td>
</tr>
<tr>
<td>150</td>
<td>150 RBX2501</td>
<td>PN25</td>
<td>355</td>
<td>457</td>
<td>127</td>
<td>20</td>
<td>300</td>
<td>612</td>
<td>69</td>
</tr>
<tr>
<td>150</td>
<td>150 RBX4001</td>
<td>PN40</td>
<td>355</td>
<td>457</td>
<td>127</td>
<td>20</td>
<td>300</td>
<td>612</td>
<td>75</td>
</tr>
<tr>
<td>200</td>
<td>200 RBX1201</td>
<td>PN16</td>
<td>405</td>
<td>497</td>
<td>151</td>
<td>20</td>
<td>360</td>
<td>872</td>
<td>97</td>
</tr>
<tr>
<td>200</td>
<td>200 RBX2501</td>
<td>PN25</td>
<td>405</td>
<td>497</td>
<td>145</td>
<td>22</td>
<td>360</td>
<td>872</td>
<td>97</td>
</tr>
<tr>
<td>200</td>
<td>200 RBX4001</td>
<td>PN40</td>
<td>405</td>
<td>497</td>
<td>141</td>
<td>30</td>
<td>375</td>
<td>872</td>
<td>108</td>
</tr>
</tbody>
</table>

0 = BS EN 1092

Information subject to change without prior notice

Page: 9
Revision Date: Sept '15
The functional limits of an air valve are governed by three physical laws namely: Joukowski's Equation, Boyle's Law and Pascal's Law. Air valve operation however is also dependent on design and internal configuration, and can vary dramatically from manufacturer's product to manufacturer's product, within the parameters of what is physically possible. The basis of the Vent-O-Mat design is in the understanding of these laws, which have been used to design an air release and vacuum break valve that provides the optimum usable safe performance relative to all functions. The following summary is a general guideline of factors to consider when sizing air valves.

Sizing for Vacuum
Calculate necessary valve orifice sizes independently for each apex point.

Determine the smallest air release and vacuum break valve capable of admitting air into the pipeline equal to the potential water flow out of the pipeline whilst not exceeding a differential pressure that would put the pipeline and gasket joints at risk due to negative internal pressure. We recommend 0.35 bar Dp or lower. This exercise is simplified on pages 11 and 12 of this catalogue. Be cautious of air valve designs with spherical floats as a low pressure zone is created above the float which causes it to partially close off the large orifice during air intake.

Note that vacuum protection is dependent on valve size selection and orifice size relative to the nominal size of the valve. In sizing air valves be cautious of designs with restricted orifice diameters, i.e., orifice diameters that are smaller than the nominal size of the valve, as this could lead to insufficient vacuum protection and pipe collapse if not accommodated for. Vent-O-Mat large orifice diameters and flow path through the valve is equal to the nominal size of the valve e.g. a DN100 (4") valve has a 100mm (4") orifice. This ensures the least possible resistance to the intake of air and consequently the least possible negative pressure within a draining pipeline.

Sizing for Discharge
If a Vent-O-Mat air valve is sized correctly for air intake, discharge should not be a factor in sizing as all air will be discharged through the large orifice or "Anti-Shock" orifice (refer to RBX operation on pages 1 and 2 of this catalogue). If this information is used for the sizing of air valves other than Vent-O-Mat, we recommend that a valve be selected that is capable of discharging air equal to the filling rate, whilst not exceeding a differential of 0.05 bar (0.725 psi) across the large orifice in order to prevent pressure surge and water hammer.

Pressurized Air Discharge
Effective discharge by an air release and vacuum break valve of pressurised air depends on the existence of a "Critical Relationship" between the area of the small orifice and the mass of the control float, i.e., the mass of the float must be greater than the force created by the working pressure acting on the orifice area. If the float is relatively too light or the orifice area relatively too great, the float will be held against the orifice even when not buoyed, and air discharge will not take place.

Surge Alleviation
It is imperative, due to the unpredictable nature of pipeline operation, that every air release and vacuum break valve should as standard, incorporate a surge and water hammer alleviation mechanism. This mechanism should only be activated in the instance of high velocity air discharge or pump trip (where the separated liquid columns rejoin at excessive velocities). The alleviation of surge and/or water hammer must be achieved by deceleration of the approaching liquid prior to valve closure (see operation of RBX on pages 1 and 2 of this catalogue). Relief mechanisms that act subsequent to valve closure cannot react in the low millisecond time span required and are therefore unacceptable.

Kindly contact the manufacturer for free copies of the Vent-O-Mat publications; "Points to Consider when Sizing and Position Air Release and Vacuum Break Valves" and "Air Valve Technology Reviewed", should you require more information on the phenomena of surge and water hammer as a result of air release, as well as the functional limits of all available air valve designs and configurations.

Vent-O-Mat has an interactive sizing programme available on the Internet. The website address is: http://www.ventomat.com. You can, should you experience any problems, or need additional assistance, contact us at our E Mail address: ventomat@dfc.co.za

information subject to change without prior notice
Series RBX

SELECTION & POSITIONING

Conversion Table/sec. to m/sec. of Pipeline Velocity

Revision Date: Sept '15

Page: 11
Revised Date: Sept '15

Vent-O-Mat®

Dynamic Fluid Control
VALVE SELECTION FROM GRAPH

All the relevant information has been condensed into one graph to enable valve selection to be simple and easy and at the same time allow flexibility to the designer to move within certain parameters which eventually allows the most suited and economically viable valve to be selected.

IMPORTANT NOTE: The graph is based on vacuum breaking and limiting vacuum to 0.34 bar below atmospheric. It is not good practice to go below 0.69 bar, absolute (0.303 bar) differential in pipeline at sea level. The graph allows for change in altitude and hence change in atmospheric pressure and is based on the assumption that more than one valve per section is used for vacuum protection and venting.

ACTUAL SELECTION (GRAVITY OR PUMPED PIPELINES)

Selection is based on the premise that pipelines are generally filled at a slower rate than they are drained, scoured or at which separation occurs (a maximum fill/drain ratio of 1:1).

1. Determine the maximum drainage rate in m/s (ft/s) either for scouring, pipe rupture or column separation for a particular pipeline section. Conversion from l/sec to m/sec can be done fairly quickly; using the conversion table on page 11.
2. Move vertically on the selection graph (top of page 11) from the m/s point and move horizontally from the pipe size finding the intersecting point.
3. This point should fall within the operating band of a particular valve size. Consideration must be given to the fact that the upper portion of the band approaches 0.34 bar and the lower portion - 0.1 bar for each valve size, this allows the designer to use a glance if the valve is too close to it's operating limits and to select the next valve size.

EXAMPLE OF VALVE SIZING (ASSUMING AN INDIVIDUAL SECTION)

A Ø 400mm (16") pipeline draining at 377 l/sec which equates to 3 m/sec, what valve size should be selected?

From the 3 m/sec point, on the graph on page 11, move vertically until the Ø400 mm (16") pipe size horizontal line is intersected. This places the intersection point in the operating band of a DN80 (3") Vent-O-Mat RBX valve. But, if for example, the drainage rate is 503 l/sec which equates to 4 m/sec, the valve would be operating close to its limit and it may be prudent to change to a DN100 (4") Vent-O-Mat RBX.

VALVE POSITIONING

1. ON APEX POINTS (relative to hydraulic gradient).
2. 5 METRES (16 FEET) BELOW APEX POINTS FORMED BY INTERSECTION OF PIPELINE AND HYDRAULIC GRADIENT - i.e. where pipeline siphoning over gradient an air release valve positioned on the apex would break the siphon. If positioning on apex is required a modified Vent-O-Mat Series RBX can be supplied.
3. NEGATIVE BREAKS (increase in downward slope or decrease in upward slope).
4. LONG HORIZONTAL SECTIONS - every 600 meters maximum.
5. LONG ASCENDING SECTIONS - every 600 meters maximum.
6. LONG DESCENDING SECTIONS - every 600 meters maximum.
7. PUMP DISCHARGE (not shown in diagram) - just subsequent to non return valve.
8. BLANK ENDS (not shown in diagram) - where a pipeline is terminated by a blind flange or a valve.

Revision Date: Sept '15
Introduction
The Vent-O-Mat Series RBX "Anti-Shock" air release and vacuum break valve, is the product of extensive research into the development of an efficient, but cost effective solution to surge problems (both mass liquid oscillation and elastic transient phenomena) associated with any operating pipeline. Automatic dampening, relevant to the pipeline’s needs is provided by either one of three design features. These special features are unique in a pipeline component of such compact and economic design.

Surge Protection - Initial Filling
The RBX incorporates the additional floating "Anti-Shock" Orifice which is aerodynamically engineered to throttle air discharge when water approach velocity would otherwise become too great and induce an unacceptable pressure rise. The air throttling action increases resistance to the flow of the approaching water which consequently decelerates to a velocity which reduces the pressure rise when the valve closes (see operation of valve on pages 1 & 2). Vent-O-Mat series RBX is an essential precaution for pipeline priming.

Surge Protection - Pump Trip Conditions
In instances where a pipeline experiences water column separation due to pump stoppage, high shock pressures can be generated when the separated water column rejoins.

The Vent-O-Mat series RBX takes in air through the unobstructed large orifice when water column separation occurs, but controls the discharge of air through the "Anti-Shock" Orifice as the separated column commences to rejoin. The rejoining impact velocity is thereby considerably reduced to alleviate high surge pressures in the system (see operation of valve on pages 1 & 2).

Other surge control measures may, dependant on pipeline profile, diameter and operating conditions, be needed to provide the primary surge alleviation function with the Vent-O-Mat air-valves forming an integral and valuable addition in a combined strategy for further reducing surge pressures. The benefit of the "Anti-Shock" Orifice can be readily demonstrated by suitable surge modelling software.

Surge Protection - Pipeline Operating
The operation of valves and similar flow control devices can cause high-pressure transients in an operating pipeline.

The unique, single chamber design of the Vent-O-Mat series RBX valve enables a pocket of air to be trapped in the valve chamber. Automatic operation of the small orifice control float regulates the volume of air entrapped.

The volume maintained in the valve will provide a cushioning benefit to the pipeline for short duration transient pressure "spikes". This effect can be modelled by the design engineer using suitable surge software.

Surge Protection - Primary Pipeline Surge Protection Failure
In instances where air vessels or other alleviation measures are utilised as primary surge protection and these devices fail, excessively high surge pressures will be generated. The same is true if pipeline demands are increased with time without the upgrading of initial surge protection equipment.
Protection by Vent-O-Mat Series RBX will provide the benefits already described. The valve in addition, has a pipeline over pressure safety feature which acts as a "rupture-disc". Operation of this feature will be without an explosive effect and without damage to valve. This feature consists of easily replaceable components such as gaskets and seals.

This feature will thus provide surge alleviation in instances where surge pressures are abnormally high. The net alleviation effect can be taken into account by the design engineer using surge modelling software.

Computer Modelling
The effectiveness of Vent-O-Mat series RBX has been substantiated by independent third party testing and by thousands of applications globally. Effective computer modeling, based on practical tests, has been ensured in the well-known and respected commercially available SURGE 2000 surge analysis software programme. Accurate results are also obtained by other commercially available surge analysis software programmes such as FLOWMASTER, TRANSAM, WATHAM and AFT Impulse.

Holistic Surge & Water Hammer Protection
Vent-O-Mat forms an integral part of a well planned, holistic surge protection strategy that should, according to application needs and financial constraints, include surge vessels, check valves, control valves and/or any other equipment needed to alleviate unacceptable surge behaviour.

Technical and Financial Benefits
The Vent-O-Mat series RBX valve offers definite financial and technical advantages when incorporated as part of a holistic surge protection strategy. This includes:

1. Improved alleviation of surge behaviour including reduction of:
 - Surge pressure magnitudes by slowing surge velocities
 - Duration of oscillation following a pump trip, as the air-valve continuously absorbs and dissipates the energies of the surge.
2. Potential for reduction in size and/or quantity of conventional surge protection devices such as surge vessels etc.
3. Automatic protection during initial filling when most surge protection devices are not operational.
4. Holistic protection as each air valve installed has design features to automatically damp surges.
5. The valve is virtually maintenance free.

Service
Vent-O-Mat is committed to finding the most cost effective and efficient solution to pipeline complexities. Services include air valve sizing and positioning and assistance to consulting engineers on defining appropriate surge and water hammer protection strategies. Vent-O-Mat has built a sound relationship with many international consulting firms and has gained global recognition for selling solutions!
SMALL ORIFICE DISCHARGE PERFORMANCE

Type:
Series RBX - Double Orifice (Small & Large Orifice) with 'Anti Shock Orifice' Mechanism

Model No's:
RBX 1601
RBX 2501
RBX 4001

- 1.2 mm (0.047") small orifice - DN25 (1") & DN50 (2") Valves
- 1.5 mm (0.059") small orifice - DN80 (3") & DN100 (4") Valves
- 2.4 mm (0.094") small orifice - DN150 (6") & DN200 (8") Valves

Q1 (scf/min.)

FOR HIGHER Δp OR DISCHARGE RATES CONSULT MANUFACTURER

Q = Normal Litres per second (Free Air) @ 1.01325 bar Abs. and 20 deg. C
Q1 = Standard Cubic Feet per minute (Free Air) @ 14.7 psi Abs. 70 deg. F

CONVERSION EQUIVALENTS
1 l/sec. = 2.1189 scf/min.
1 scf/min = 0.472 l/sec.
1 bar = 14.5 psi
1 psi = 0.069 bar

information subject to change without prior notice

page: 15
Revision Date: Sept '15
Series RBX

PURCHASE SPECIFICATION

VENT -O- MAT MODEL NO.
Page 7 - Series RBX - DN25 (1") or DN50 (2") with BSP or NPT, Screwed Male Connection.
Page 8 - Series RBX - DN80 (3") or DN100 (4") Flanged Connection.
Page 9 - Series RBX - DN150 (6") or DN200 (8") Flanged Connection.

CONSTRUCTION & DESIGN
The air release & vacuum break valve shall be of the compact single chamber design with solid cylindrical
H.D.P.E. control Floats housed in a tubular Stainless Steel Body with epoxy powder coated Mild Steel, Ductile
Iron or Stainless Steel ends secured by means of Stainless Steel Tie Rods.
The valve shall have an integral 'Anti-Shock' Orifice mechanism which shall operate automatically to limit
transient pressure rise or shock induced by closure to 1.5 x valve rated working pressure.
The intake orifice area shall be equal to the nominal size of the valve i.e., a 150mm (6") valve shall have a
150mm (6") intake orifice.
Large orifice sealing shall be effected by the flat face of the control float seating against a EPDM rubber 'O' ring
housed in a dovetail groove circumferentially surrounding the orifice.
Discharge of pressurized air shall be controlled by the seating & unseating of a Small Orifice Nozzle on a EPDM
rubber seal affixed into the control float. The Nozzle shall have a flat seating land surrounding the orifice so that
the damage to the rubber seal is prevented.
The valve construction shall be proportioned with regard to material strength characteristics, so that
deformation, leaking or damage of any kind does not occur by submission to one and half times the designed
working pressure.
The valve design shall incorporate an over pressure safety feature that will fail without an explosive effect, such
as is normally the case when highly compressed air is released suddenly. The feature shall consist of easily
replaceable components such as Gaskets, Seals or the like.
Connection to the valve inlet shall be facilitated by a screwed BSP or NPT male end (DN25 (1") & DN50 (2"
only) or a flanged end conforming to PN10, 16, 25 or 40 ratings of BS EN 1092 or SABS 1123 Standards and
ANSI B16.5 Class 150 or Class 300 Standards.
Flanged ends for DN80 and DN100 shall be supplied with the requisite number of Stainless Steel screwed studs
inserted for alignment to the specified standard. Nuts, washers, or jointing gaskets shall be excluded.

Optional:
Provision of a ¼" BSP/ NPT Test/ Bleed Cock.

OPERATION
1. Prior to the ingress of liquid into the valve chamber, as when the pipeline is being filled, valves shall vent
through the large orifice when water approach velocities are relative to a transient pressure rise, on valve
closure, of < 1.5 x valve rated pressure.
At higher water approach velocities, which have a potential to induce transient pressure rises > 1.5 x
valve rated pressure on valve closure, the valve shall automatically discharge air through the Anti Shock
Orifice and reduce water approach velocity, so that on closure a maximum transient pressure rise of < 1.5 x
valve rated pressure is realised.
2. Valves shall not exhibit leaks or weeping of liquid past the large orifice seal at operating pressures of 0.5 bar
to one and a half times the rated working pressure.
3. Valves shall respond to the presence of air by discharging it through the small orifice at pressures within a
specified design range, i.e. 0.5 bar to 16 bar, 25 bar or 40 bar, and shall
Remain leak tight in the absence of air.
4. Valves shall react immediately to pipeline drainage or water column separation by the full opening of the
large orifice so as to allow unobstructed air intake at the lowest possible negative internal pipeline pressure.
Series RBX

ORDERING GUIDE

VALVE SIZE:
- 1" 0.25
- 2" 0.50
- 3" 0.80
- 4" 1.00
- 6" 1.50
- 8" 2.00

VALVE SERIES:

VALVE PRESSURE RATING:
- 276 psi 1
- 363 psi 2
- 580 psi 4

VALVE TYPE:
- DOUBLE ACTING 1

VALVE END CONNECTION:
- SCREWED - BSP 1
- SCREWED - NPT 2
- FLANGED - BS EN 1092 0
- FLANGED - ANSI B16.5 3

Note:
1. 10" and 12" valves are available on request.
2. Valves for pressure ratings of 928 psi and 1450 psi are available on request.
3. Valves are available with AISI 304 or AISI 316 Stainless Steel Flanged ends, please specify when ordering.

TEST SPECIFICATIONS

All air release valves supplied shall be subjected to the following testing procedures in the order laid down:

(A) A high pressure strength and leak test whereby the valve is filled with water and pressurized to 1.5 times the rated working pressure which shall be held for a period of 2 minutes. Any leaking, weeping or sweating shall be reason for rejection.

(B) A low head leak test whereby the valve is filled with water and pressurized to a maximum of 7.25 psi using a visible water column connected to the test rig. The valve shall be rejected if leak tightness is not maintained for 2 minutes.

(C) Every tenth air release valve of the same size and pressure rating must be subjected to a small orifice function test - "DROP TEST" - whereby the valve is filled with water, pressurized to above rated working pressure and isolated from the test rig by closure of an isolating valve. A chamber in the test rig immediately prior to the isolating valve must be filled with compressed air at a pressure equal to that being maintained in the air release valve. The isolating valve is then opened so as to allow the air to rise in the air release valve without the pressure dropping lower than 29 - 44 psi above rated working pressure of the air release valve. The "DROP TEST" is then carried out by slowly bleeding off the pressure through a suitable cock until rated working pressure is reached and the float drops away from the orifice to allow discharge. Failure of the air release valve to function in the manner described will be reason for rejection.

On request the manufacturer shall provide batch certificates of test compliance which shall be cross referenced to serial numbers indelibly marked onto the identity label of each valve.

IMPORTANT NOTE: It is impossible to inject air into an incompressible liquid, air injection can only be achieved if the liquid can be displaced which implies that the pressure in the test rig must be reduced to atmospheric, and absolutely nothing is proven by discharge through the small orifice of the air release valve at atmospheric pressure. "DROP TESTING" in this manner is not acceptable.
PRE NOTES:

It is good engineering practice, for vertical turbine pumps and deepwell, submersible pump applications, to install air valves prior to the pump discharge check valve. The purpose of these valves is to prevent air entry into the pipeline and to break vacuum in the vertical riser upon pump shutoff.

Operation of conventional air valves in this application is such that the air in the vertical riser is released very rapidly upon pump startup, resulting in very high pressure transients when the water column slams the air valve shut and/or slams into the closed discharge check valve.

The Vent-O-Mat Series RBXb valve has specifically been developed for use on deep well submersible pump and vertical turbine pump applications where they are installed prior to the pump discharge check valve to fulfill the following functions:

* Provide effective and controlled release of air in the vertical riser upon pump startup.
* Dampen surge pressures upon pump startup.
* Provide vacuum protection when the pump stops and the vertical column drains.

VACUUM RELIEF (AIR INTAKE)

Upon pump stop, the pump discharge check valve closes. Liquid drains from the air valve and the pump's vertical column. The negative differential created by the draining liquid causes atmospheric air to push the "Anti-Shock" Float (6) down, opening the Large Orifice (3) and rapidly displaces the draining liquid to prevent potentially damaging internal negative pressure *.

*Note: A differential pressure of less than 0.05 bar across the Large Orifice (3) is required to open the valve fully under vacuum conditions.
VENTING (PUMP START UP)

Air is forced through the "Anti-Shock" Orifice (8) resulting in the deceleration of the approaching water column due to the resistance of rising air pressure in the valve. This dampens transients when the air valve closes and the water column opens the pump, discharge check valve.

PRESSURIZED AIR RELEASE (PUMP OPERATING)

Liquid enters the valve Barrel Chamber (2) and the Floats (4), (5) are buoyed so that the "Anti-Shock" Orifice (8) is closed by the Floats (4), (5) the valve will then become internally pressurized.

Disentrained air rises through the liquid and accumulates in the valve chamber when the volume of air is sufficient to displace the liquid. Float (4) will no longer be buoyant and will gravitate downwards thereby opening the Small Orifice (7) and allowing accumulated air to be discharged into atmosphere, as the air is discharged the liquid raises the Float (4) and reseals the Small Orifice (7) and prevents escape of liquid.
RECOMMENDED INSTALLATION ARRANGEMENTS

VERTICAL TURBINE PUMP APPLICATION

SUBMERSIBLE/DEEP WELL APPLICATION

CENTRIFUGAL PUMP APPLICATION

For Recommended Accumulator Dimensions
See Page 3

Vent-O-Mat RBXb Air Valve
Isolator
Check Valve

Vent-O-Mat RBXb Air Valve
Isolator
Check Valve

Vent-O-Mat RBXb Air Valve
Isolator
Check Valve

page: 20
Revision Date: Sept '15
Series RBXb

COMPONENT DESCRIPTION & MATERIAL SPECIFICATION
SCREWED - DN25(1") & DN50(2")

Type:
Series RBXb - Double Orifice (Small & Large Orifice) with Bias Mechanism.

End Connection:
Screwed BSP (ISO R7) / NPT Male (ASME B1.20.1)

Nominal Sizes:

<table>
<thead>
<tr>
<th>Size</th>
<th>Model No's:</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN025 (1")</td>
<td>RBXb 2511 & 2521</td>
<td>PN25</td>
</tr>
<tr>
<td>DN050 (2")</td>
<td>RBXb 4011 & 4021</td>
<td>PN40</td>
</tr>
</tbody>
</table>

Locking Nuts
Stainless Steel AISI 316

Bias Spring
Stainless Steel AISI 304

Upper Flange
Fusion Bonded Epoxy Powder Coated Ductile Cast Iron BS2789 Grade 420/12 Alternatively Mild Steel BS 4360 Grade 43A

Nuts
Stainless Steel AISI 304

Washer
Stainless Steel AISI 304

Top Float
High Density Polyethylene

Nozzle
Stainless Steel AISI 316

Nozzle Seat
EPDM Rubber

Tie Rods
Stainless Steel AISI 304

Baffle Plate
Stainless Steel AISI 316

Baffle Plate Spacer
ABS Polylac PA737

Lower Flange
Fusion Bonded Epoxy Powder Coated Ductile Cast Iron BS2789 Grade 420/12 Alternatively Mild Steel BS 4360 Grade 43A

Locating Lugs
Grey PVC

Top Cover
ABS Polylac PA737

Assembly Screws
Cheesehead Stainless Steel AISI 316

Barrel Seal
TEADIT NA 1002

O-Ring Seal
EPDM Rubber

Anti Shock Orifice
High Density Polyethylene

O-Ring Seal
EPDM Rubber

Barrel
Stainless Steel AISI 316

Lower Float
High Density Polyethylene

Optional Test Cock
1/4" Female BSP

Float Guide
Stainless Steel AISI 316

Baffle Plate Spacer
ABS Polylac PA737

Support Screw
Cheesehead Stainless Steel AISI 316

Valves available in AISI 304L and 316L on request

Information subject to change without prior notice

Page: 21
Revision Date: Sept '15
COMPONENT DESCRIPTION & MATERIAL SPECIFICATION

FLANGED - DN80(3") & DN100(4")

Type:
Series RBXb - Double Orifice (Small & Large Orifice) with Bias Mechanism.

End Connection:
Flange with screwed studs.

Nominal Sizes:
- DN080 (3")
- DN100 (4")

Pressure Ratings:
- DN080 (3")
 - Model No's: RBXb 1601, PN16
- DN100 (4")
 - Model No's: RBXb 2501, RBXb 4001, PN25, PN40

Materials:
- **Locating Lugs:** Stainless Steel AISI 316
- **Top Flange:**
 - Fusion Bonded Epoxy Powder Coated
 - Ductile Cast Iron BS2789 Grade 420/12
 - Alternatively Mild Steel BS4360 Grade 43A (PN40)
- **Bottom Flange:**
 - Fusion Bonded Epoxy Powder Coated
 - Ductile Cast Iron BS2789 Grade 420/12
 - Alternatively Mild Steel BS4360 Grade 43A (PN40)
- **Nuts:** Stainless Steel AISI 304
- **Washer:** Stainless Steel AISI 304
- **Top Float:** High Density Polyethylene
- **Nozzle:** Stainless Steel AISI 316
- **Nozzle Seat Retaining Plate:** Stainless Steel AISI 316
- **Nozzle Seat:** EPDM Rubber
- **Tie Rods:** Stainless Steel AISI 304
- **Baffle Plate:** Stainless Steel AISI 316
- **Lower Flange:**
 - Fusion Bonded Epoxy Powder Coated
 - Ductile Cast Iron BS2789 Grade 420/12
 - Alternatively Mild Steel BS4360 Grade 43A (PN40)
- **O-Ring Seal:** EPDM Rubber
- **Anti Shock Orifice:** High Density Polyethylene
- **Connecting Screws:** Stainless Steel AISI 316
- **Optional Test Cock:** ¼" Female BSP
- **Support Screw:** Cheesehead Stainless Steel AISI 316
- **Studs:** Stainless Steel AISI 316

Valves are available in AISI 304L and 316L on request.

Information subject to change without prior notice
Series RBXb

COMPONENT DESCRIPTION & MATERIAL SPECIFICATION
FLANGED - DN150(6") & DN200(8")

Type:
Series RBXb - Double Orifice (Small & Large Orifice) with Bias Mechanism.

End Connection:
Flanged.

Nominal Sizes:

<table>
<thead>
<tr>
<th>Size</th>
<th>Model No's</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN150(6")</td>
<td>RBXb 1601</td>
<td>PN16</td>
</tr>
<tr>
<td>DN200(8")</td>
<td>RBXb 2501</td>
<td>PN25</td>
</tr>
<tr>
<td></td>
<td>RBXb 4001</td>
<td>PN40</td>
</tr>
</tbody>
</table>

Model No's:

<table>
<thead>
<tr>
<th>Size</th>
<th>Model No's</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN150(6")</td>
<td>RBXb 1601</td>
</tr>
<tr>
<td>DN200(8")</td>
<td>RBXb 2501</td>
</tr>
<tr>
<td></td>
<td>RBXb 4001</td>
</tr>
</tbody>
</table>

Pressure:

- PN16
- PN25
- PN40

Valves are available in AISI 304L and 316L on request.

Information subject to change without prior notice.

page: 23
Revision Date: Sept '15
Series RBXb
GENERAL SPECIFICATIONS
SCREWED - DN25(1") & DN50(2")

Type:
Double Orifice (Small & Large Orifice) with Bias Mechanism for large volume air intake and controlled air discharge.

End Connection:
Screwed BSP/ NPT male

Nominal Sizes:
DN 025 (1") & DN 050 (2")

Model No’s:	Pressure Ratings bar :
RBXb 2511 | PN 25
RBXb 4011 | PN 40

Operating Pressure Range - bar:
Min.	Max.
PN 25 | 0.5 | 25
PN 40 | 0.5 | 40

Operating Temperature Range:
4°C (40°F) to 80°C (176°F)

Acceptable Media:
Potable or strained raw water.

Function:
i) Controlled air discharge - pipeline filling
ii) Pressurized air discharge - pipeline filled.
iii) Surge dampening - high velocity air discharge, water column separation & liquid oscillation.
iv) High volume air intake - pipeline draining.

Materials of Construction: - see page 22

Installation:- see page 21

Standard Factory Tests:
i) Hydrostatic - 1.5 x max. rated working pressure
ii) Low head leak - 0.5 bar
iii) Small orifice function at max. rated working pressure (minimum 1 valve in 10).

OVERALL DIMENSIONS & WEIGHTS

<table>
<thead>
<tr>
<th>DN mm</th>
<th>MODEL No</th>
<th>PRESSURE RATING</th>
<th>A mm</th>
<th>B mm</th>
<th>C mm</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 1</td>
<td>025 RBXb2511</td>
<td>PN25</td>
<td>120</td>
<td>335</td>
<td>1” BSP/NPT</td>
<td>5</td>
</tr>
<tr>
<td>25 1</td>
<td>025 RBXb4011</td>
<td>PN40</td>
<td>120</td>
<td>387</td>
<td>1” BSP/NPT</td>
<td>5.5</td>
</tr>
<tr>
<td>50 2</td>
<td>050 RBXb2511</td>
<td>PN25</td>
<td>165</td>
<td>395</td>
<td>2” BSP/NPT</td>
<td>9.5</td>
</tr>
<tr>
<td>50 2</td>
<td>050 RBXb4011</td>
<td>PN40</td>
<td>165</td>
<td>410</td>
<td>2” BSP/NPT</td>
<td>10</td>
</tr>
</tbody>
</table>

1 = Screwed BSP
2 = Screwed NPT

FLANGED AVAILABLE ON REQUEST

information subject to change without prior notice

page: 24
Revision Date: Sept '15
Series RBXb

GENERAL SPECIFICATIONS

FLANGED-DN80(3") & DN100(4")

Type:
Double Orifice (Small & Large Orifice) with Bias Mechanism for large volume air intake and controlled air discharge.

End Connection:
Flange with Screwed Studs for Alignment to;
BS EN 1092 PN10, PN16, PN25 & PN40
ANSI B16.5 Class 150 & 300

Nominal Sizes:
DN80 (3") & DN100 (4")

Model No’s: Pressure Ratings bar:
RBX 1601 _______________ PN 16
RBX 2501 _______________ PN 25
RBX 4001 _______________ PN 40

Operating Pressure Range - bar (psi):
<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN16</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>PN25</td>
<td>0.5</td>
<td>25</td>
</tr>
<tr>
<td>PN40</td>
<td>0.5</td>
<td>40</td>
</tr>
</tbody>
</table>

Operating Temperature Range:
4°C (40°F) to 80°C (176°F)

Acceptable Media:
Potable or strained raw water.

Function:
i) Controlled air discharge - pipeline filling.
ii) Pressurized air discharge - pipeline filled.
iii) Surge dampening - high velocity air discharge, water column separation & liquid oscillation.
iv) High volume air intake - pipeline draining.

Materials of Construction: - see page 23

Installation: - see page 21

Standard Factory Tests:
i) Hydrostatic - 1.5 x max. rated working pressure
ii) Low head leak - 0.5 bar
iii) Small orifice function at max. rated working pressure (minimum 1 valve in 10).

OVERALL DIMENSIONS & WEIGHTS

<table>
<thead>
<tr>
<th>DN mm</th>
<th>MODEL No.</th>
<th>MODEL No.</th>
<th>A mm</th>
<th>B mm</th>
<th>C mm</th>
<th>WEIGHT kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>080 RBXb 1601</td>
<td>PN16</td>
<td>235</td>
<td>460</td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>80</td>
<td>080 RBXb 2501</td>
<td>PN25</td>
<td>235</td>
<td>460</td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>80</td>
<td>080 RBXb 4001</td>
<td>PN40</td>
<td>235</td>
<td>475</td>
<td>50</td>
<td>24.5</td>
</tr>
<tr>
<td>100</td>
<td>100 RBXb 1601</td>
<td>PN16</td>
<td>235</td>
<td>475</td>
<td>50</td>
<td>22.5</td>
</tr>
<tr>
<td>100</td>
<td>100 RBXb 2501</td>
<td>PN25</td>
<td>235</td>
<td>480</td>
<td>60</td>
<td>22.5</td>
</tr>
<tr>
<td>100</td>
<td>100 RBXb 4001</td>
<td>PN40</td>
<td>235</td>
<td>513</td>
<td>60</td>
<td>24</td>
</tr>
</tbody>
</table>

0 = BS EN 1092

information subject to change without prior notice

page: 25
Revision Date: Sept '15
Series RBXb

GENERAL SPECIFICATIONS
FLANGED-DN150(6") & DN200(8")

Type:
Double Orifice (Small & Large Orifice) with Bias Mechanism for large volume air intake and controlled air discharge.

End Connection:
Flange for Alignment to;
BS EN 1092 PN10, PN16, PN25 & PN40
ANSI B16.5 Class 150 & 300

Nominal Sizes:
DN150 (6") & DN200 (8")

Model No's:
<table>
<thead>
<tr>
<th>Model No</th>
<th>Pressure Ratings bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBX 1601</td>
<td>PN 16</td>
</tr>
<tr>
<td>RBX 2501</td>
<td>PN 25</td>
</tr>
<tr>
<td>RBX 4001</td>
<td>PN 40</td>
</tr>
</tbody>
</table>

Operating Pressure Range - bar:
- Min: 0.5
- Max: 16 for PN16
- Max: 25 for PN25
- Max: 40 for PN40

Operating Temperature Range:
4°C (40°F) to 80°C (176°F)

Acceptable Media:
Potable or strained raw water.

Function:
- i) Controlled air discharge - pipeline filling.
- ii) Pressurized air discharge - pipeline filled.
- iii) Surge dampening - high velocity air discharge, water column separation & liquid oscillation.
- iv) High volume air intake - pipeline draining.

Materials of Construction: - see page 24

Installation: - see page 21

Standard Factory Tests:
- i) Hydrostatic - 1.5 x max. rated working pressure
- ii) Low head leak - 0.5 bar
- iii) Small orifice function at max. rated working pressure (minimum 1 valve in 10).

OVERALL DIMENSIONS & WEIGHTS

<table>
<thead>
<tr>
<th>DN (mm)</th>
<th>MODEL No.</th>
<th>PRESSURE RATING</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
<th>F (mm)</th>
<th>WEIGHT (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>150 RBXb 1601</td>
<td>PN16</td>
<td>355</td>
<td>630</td>
<td>133</td>
<td>19</td>
<td>285</td>
<td>785</td>
<td>69.5</td>
</tr>
<tr>
<td>150</td>
<td>150 RBXb 2501</td>
<td>PN25</td>
<td>355</td>
<td>630</td>
<td>127</td>
<td>20</td>
<td>300</td>
<td>785</td>
<td>69.5</td>
</tr>
<tr>
<td>150</td>
<td>150 RBXb 4001</td>
<td>PN40</td>
<td>355</td>
<td>630</td>
<td>127</td>
<td>26</td>
<td>300</td>
<td>785</td>
<td>75.5</td>
</tr>
<tr>
<td>200</td>
<td>200 RBXb 1601</td>
<td>PN16</td>
<td>405</td>
<td>670</td>
<td>131</td>
<td>20</td>
<td>340</td>
<td>845</td>
<td>97.5</td>
</tr>
<tr>
<td>200</td>
<td>200 RBXb 2501</td>
<td>PN25</td>
<td>405</td>
<td>670</td>
<td>145</td>
<td>22</td>
<td>360</td>
<td>845</td>
<td>97.5</td>
</tr>
<tr>
<td>200</td>
<td>200 RBXb 4001</td>
<td>PN40</td>
<td>405</td>
<td>670</td>
<td>141</td>
<td>20</td>
<td>375</td>
<td>845</td>
<td>108.5</td>
</tr>
</tbody>
</table>

0 = BS EN 1092

information subject to change without prior notice

page: 26
Revision Date: Sept '15
CONSTRUCTION & DESIGN

The air release & vacuum break valve shall be of the compact single chamber design with solid cylindrical H.D.P.E. control floats housed in a tubular Stainless Steel body with epoxy powder coated Mild Steel or Stainless Steel ends secured by means of Stainless Steel Tie Rods.

The valve shall have an integral 'Anti-Shock' Orifice mechanism which shall operate automatically to limit transient pressure rise or shock induced by closure to 1.5 x valve rated working pressure.

The intake orifice area shall be equal to the nominal size of the valve i.e., a 150mm (6") valve shall have a 150mm (6") intake orifice.

Large orifice sealing shall be effected by the flat face of the control float seating against a EPDM rubber 'O' ring housed in a dovetail groove circumferentially surrounding the orifice.

Discharge of pressurized air shall be controlled by the seating & unseating of a Small Orifice Nozzle on a EPDM rubber seal affixed into the control float. The Nozzle shall have a flat seating land surrounding the orifice so that the damage to the rubber seal is prevented.

The valve construction shall be proportioned with regard to material strength characteristics, so that deformation, leaking or damage of any kind does not occur by submission to one and a half times the designed working pressure.

The valve design shall incorporate an over pressure safety feature that will fail without an explosive effect, such as is normally the case when highly compressed air is released suddenly. The feature shall consist of easily replaceable components such as gaskets, seals or the like.

Connection to the valve inlet shall be facilitated by a screwed BSP or NPT male end (DN25 (1") & DN50 (2") only) or a flanged end conforming to PN10, 16, 25 or 40 ratings of BS EN 1092 or SABS 1123 Standards or, ANSI B16.5 Class 150 & Class 300 Standards.

Flanged ends for DN80 and DN100 shall be supplied with the requisite number of Stainless Steel screwed studs inserted for alignment to the specified standard. Nuts, washers, or jointing gaskets shall be excluded.

Optional: Provision of a ¼" BSP/ Test/ Bleed Cock.

OPERATION

1. Prior to the ingress of liquid into the valve chamber, as when the pipeline is being filled, valves shall vent through the "Anti-Shock" Orifice and reduce water approach velocity, so that on closure a maximum transient pressure rise of < 1.5 x valve rated pressure is realised.

2. Valves shall not exhibit leaks or weeping of liquid past the large orifice seal at operating pressures of 0.5 bar to one and half times the rated working pressure.

3. Valves shall respond to the presence of air by discharging it through the small orifice at any pressures within a specified design range, i.e. 0.5 bar to 16 bar, 25 bar or 40 bar, and shall remain leak tight in the absence of air.

4. Valves shall react immediately to pipeline drainage or water column separation by the full opening of the large orifice so as to allow unobstructed air intake at the lowest possible negative internal pipeline pressure.
PRE NOTES:

There are instances where the hydraulic gradeline falls below a peak point during normal operation and where air inflow would adversely affect the normal operation and surge characteristic of the pipeline. Air intake may also be undesirable under pump trip conditions for pipelines running through a marsh (surge protection in these instances would be in the form of surge vessels and/or the pipeline will be designed for full vacuum).

Vent-O-Mat offers the Series RBXv valve which has specifically been developed to ensure effective air release under all pipeline conditions but will not allow air entry under any operating condition.

VENTING OF A FILLING PIPELINE (SUB CRITICAL WATER APPROACH VELOCITY)

Air enters Orifice (1), travels through the annular space between the cylindrical floats (4), (5), (6) and discharges through the Large Orifice (3) into atmosphere.*

*Note: A relatively low flow discharge rate is required to lift float and ensure air release. Float will seat on the Middle Flange (9) under vacuum conditions, effectively preventing air entry.
VENTING OF A FILLING PIPELINE (EXCESSIVE WATER APPROACH VELOCITY)

In reaction to increased air flow, Float (6) closes Large Orifice and air is forced through the "Anti-Shock" Orifice resulting in deceleration of the approaching water due to the resistance of rising air pressure in the valve.

PRESSURIZED AIR RELEASE FROM A FULL PIPELINE

Subsequent to the filling of a pipeline, liquid enters the valve Barrel Chamber (2) and the Floats (4), (5) and (6) are buoyed so that the "Anti-Shock" Orifice (8) is closed by the Float (5) and the valve will then become pressurized. A minimal working pressure of <0.5 bar acting on a relatively large area of the Orifice (1) will lock Floats (5) and (6) into the closed position across the Large Orifice (3).

Disentained air rises through the liquid and accumulates in the valve chamber, when the volume of air is sufficient to displace the liquid, Float (4) will no longer be buoyant and will gravitate downwards thereby opening the Small Orifice (7) and allowing accumulated air to be discharged into atmosphere, as air is discharged the liquid raises Float (4) and reseals the Small Orifice (7) and prevents escape of liquid.
VENT -O- MAT MODEL NO.
Series RBXv - DN25 (1") or DN50 (2") with BSP or NPT, Screwed Male Connection.
Series RBXv - DN80 (3") or DN100 (4") Flanged Connection.
Series RBXv - DN150 (6") or DN200 (8") Flanged Connection.

CONSTRUCTION & DESIGN
The air vent valve shall be of the compact single chamber design with solid cylindrical H.D.P.E. control floats
housed in a tubular Stainless Steel Body with epoxy powder coated Mild Steel ends or Stainless Steel ends
secured by means of Stainless Steel Tie Rods.
The valve shall have an integral 'Anti-Shock' Orifice mechanism which shall operate automatically to limit transient
pressure rise or shock induced by closure to 1.5 x valve rated working pressure.
The discharge orifice area shall be equal to the nominal size of the valve i.e., a 150mm (6") valve shall have a
150mm (6") intake orifice.
Large orifice sealing shall be effected by the flat face of the control float seating against a EPDM rubber 'O' ring
housed in a dovetail groove circumferentially surrounding the orifice.
Discharge of pressurized air shall be controlled by the seating & unseating of a Small Orifice Nozzle on a EPDM
rubber seal affixed into the control float. The Nozzle shall have a flat seating land surrounding the orifice so that the
damage to the rubber seal is prevented.
The valve construction shall be proportioned with regard to material strength characteristics, so that deformation,
leaking or damage of any kind does not occur by submission to twice the designed working pressure.
The valve design shall incorporate an over pressure safety feature that will fail without an explosive effect, such as
is normally the case when highly compressed air is released suddenly. The feature shall consist of easily
replaceable components such as gaskets, seals or the like.
Connection to the valve inlet shall be facilitated by a screwed BSP or NPT Male end (DN25 (1") & DN50 (2") only)
or a flanged end conforming to PN10, 16, 25 or 40 ratings of BS EN 1092 or SABS 1123 Standards or, ANSI B16. 5
Class 150 & Class 300 Standards.
Flanged ends for DN80 and DN100 valves shall be supplied with the requisite number of Stainless Steel screwed
studs inserted for alignment to the specified standard. Nuts, washers, or jointing gaskets shall be excluded.

Optional: Provision of a ¼" BSP/ NPT Test/ Bleed Cock.

OPERATION
1. Prior to the ingress of liquid into the valve chamber, as when the pipeline is being filled, valves
shall vent through the large orifice when water approach velocities are relative to a transient pressure
rise on valve closure of 1.5 x valve rated pressure
At higher water approach velocities, which have a potential to induce transient pressure rises >1.5 times
valve rated pressure on closure, the valve shall automatically discharge through the "Anti-Shock"
Orifice and reduce water approach velocity, so that on closure a maximum transient pressure rise of <1.5 x
valve rated pressure is realised.

2. Valves shall not exhibit leaks or weeping of liquid past the large orifice seal at operating pressures of
0.5 bar to 1.5 times rated working pressure.

3. Valves shall respond to the presence of air by discharging it through the small orifice at any
pressures within a specified design range, i.e. 0.5 bar to 16 bar, 25 bar or 40 bar, and shall remain leak tight in
the absence of air.
Series RBXb and RBXv
ORDERING GUIDE

VALVE SIZE:
DN25 (1") - 0.25
DN50 (2") - 0.50
DN80 (3") - 0.80
DN100 (4") - 1.00
DN150 (6") - 1.50
DN200 (8") - 2.00

ANTI SHOCK ORIFICE:
BIAS AIR IN []
BIAS AIR OUT [X]

VALVE SERIES No.
0 5 0 R B X b 2 5 0 1

VALVE TYPE:
DOUBLE ACTING []

VALVE END CONNECTION:
SCREWED - BSP []
SCREWED - NPT []
FLANGED - BS EN 1092 []
FLANGED - ANSI B16.5 []

VALVE PRESSURE RATING:
PN 16 [16]
PN 25 [25]
PN 40 [40]

Note:
1. DN250 (10") and DN300 (12") valves are available on request.
2. Valves for pressure ratings of PN64 and PN100 are available on request.
3. Valves are available with AISI 304 or AISI 316 Stainless Steel Flanged ends, please specify when ordering.

TEST SPECIFICATION
All air release valves supplied shall be subjected to the following testing procedures in the order laid down:
(A) A high pressure strength and leak test whereby the valve is filled with water and pressurized to 1.5 times the rated working pressure which shall be held for a period of 2 minutes. Any leaking, weeping or sweating shall be reason for rejection.
(B) A low head leak test whereby the valve is filled with water and pressurized to a maximum of 0.5 bar using a visible water column connected to the test rig. The valve shall be rejected if leak tightness is not maintained for 2 minutes.
(C) Every tenth air release valve of the same size and pressure rating must be subjected to a small orifice function test - "DROP TEST" - whereby the valve is filled with water, pressurized to above rated working pressure and isolated from the test rig by closure of an isolating valve. A chamber in the test rig immediately prior to the isolating valve must be filled with compressed air at a pressure equal to that being maintained in the air release valve. The isolating valve is then opened so as to allow the air to rise in the air release valve without the pressure dropping lower than 2 - 3 bar above rated working pressure of the air release valve. The "DROP TEST" is then carried out by slowly bleeding off the pressure through a suitable cock until rated working pressure is reached and the float drop away from the orifice to allow discharge. Failure of the air release valve to function in the manner described will be reason for rejection.

On request the manufacturer shall provide batch certificates of test compliance which shall be cross referenced to serial numbers indelibly marked onto the identity label of each valve.

IMPORTANT NOTE: It is impossible to inject air into an incompressible liquid, air injection can only be achieved if the liquid can be displaced which implies that the pressure in the test rig must be reduced to atmospheric, and absolutely nothing is proven by discharge through the small orifice of the air release valve at atmospheric pressure. "DROP TESTING" in this manner is not acceptable.
1. DEFINITIONS

1.1 Seller: Dynamic Fluid Control (Pty) Ltd

1.2 Purchaser: The party who places an order on the Seller, which is accepted by the Seller in terms of Clause 2 (such acceptance hereinafter being referred to as “Acceptance of Order”)

1.3 Goods: The materials, products and/or services ordered by the Purchaser and accepted by the Seller in terms of Clause 2.

Contract: These General Conditions of Tender and Sale, technical specifications of the Purchaser’s requirements, these General Conditions and any other terms and conditions specifically agreed in writing between the parties.

2. ACCEPTANCE OF ORDER

2.1 The Purchaser’s order shall constitute an offer, and a contract shall only come into existence when the Seller accepts the order, i.e. issuing an Acceptance of Order or by performing in response to the order. Unless otherwise specifically agreed in writing to the contrary, the contract may not be cancelled or varied.

2.2 In the event that the Purchaser and the Seller engage in negotiations for amendments or additions to or deletions from the General Conditions of Tender and Sale, none of these General Conditions shall be amended (if at all) by agreement in writing.

3. SCOPE OF CONTRACT

3.1 These General Conditions of Tender and Sale will be used to produce the Goods in accordance with the terms and conditions of the contract, including any additional terms and conditions that may be agreed in writing between the parties.

4. LIABILITY

4.1 Liability for Orders

The Seller undertakes that the Goods conform to such specifications in respect of such items as it has been specifically accepted by the Seller in writing and in the event of the Goods not conforming to the specifications, the Purchaser shall be entitled to no remedy in respect of such items and shall be limited to its right to incur such additional costs as may be incurred in respect of bringing the Goods to meet the specifications, or defects or differences in the Goods, by supplying the repaired or replacement portion components of the Goods, or the Goods as a whole or a lesser quality of Goods, as may be agreed in writing between the parties.

4.2 Liability for Delay

Subject to the provisions of Clause 8 and 10, the Seller undertakes to supply the Goods in accordance with the delivery dates as specified in the contract and in the event that the Goods are not supplied in accordance with such dates, or within extensions of such dates, or if delays caused thereby, the Purchaser’s liability shall be limited to such penalty for late delivery as may have been specifically accepted by the Seller in writing in respect of such date or dates, or if no penalty was specified in the contract, the Purchaser shall be entitled to such additional costs as may be incurred in respect of bringing the Goods to meet the delivery dates, or the reasonable cost of storage, or any failure or delay on the part of the Purchaser or the Purchaser’s agents or other Contractors to provide free issue materials or by any other act, default or omission by or on behalf of the Seller, the Purchaser shall be entitled to appropriate variation to the rates or to the Contract price or to the quantities set out in the contract.

5. DELIVERY

5.1 Unless otherwise agreed in writing, delivery shall be ex “the Seller’s works” and the Contract Price is based on such “ex works” delivery and is exclusive of any sales tax payable in terms of any statute.

5.2 The risk in and to the Goods will pass to the Purchaser on Delivery and claims for non-delivery or for shortages or damage upon receipt of the Goods must be made in writing by the Purchaser within the发生的 (7) seven days of the relevant date of delivery or receipt of the Goods as the case may be, failing which the Seller shall have no liability in respect of such claims.

5.3 Should the Purchaser fail or refuse to take delivery of the Goods when delivery is tendered by the Seller, the Purchaser shall be liable for such costs as may be incurred by the Seller as consequence thereof.

6. CONTRACT PRICE

6.1 Unless otherwise specifically agreed in writing in each particular instance, the contract price shall be as set out in the tender and is based on the cost of materials, transport, labour, insurance rates, exchange rates and import duties ruling at the date of the tender and any variation in such costs or rates occurring hereafter shall be for the account of the Purchaser, and shall be determined in accordance with the formula included in the tender. Should no formula be included, in accordance with the prevailing relevant formula, principles and indices published by SEFISA.

6.2 If the Goods or any part thereof are to be imported, the price will be based on the rates of exchange, freight rates, insurance rates, port dues, customs duty and export duties at the date of tender, or as specifically agreed. Should these rates vary between the date of the tender and the date upon which charges are incurred, the price shall be varied by the amount of the increase or decrease in the charges.